目前,商业锂离子电池的能量密度和充电速度无法满足更广阔的市场需求。商业电池的快充目标为15分钟内完成80%的充电,现阶段石墨负极因其较低的电化学平台,在反复的充放电过程中易生长锂枝晶而导致电池短路。正交相的五氧化二铌(T-Nb2O5)具有由NbO6和NbO7两种多面体共顶点或共边连接构成的层状结构,这种稳定的房柱式(room and pillar)框架结构保证了T-Nb2O5可以凭高赝电容效应的方式储锂。然而,T-Nb2O5较低的电子电导率限制其电化学性能的发挥,增大电位极化并使动力学过程缓慢。
针对T-Nb2O5电导率不足的问题,中国科学院上海硅酸盐研究所研究员李驰麟团队提出了新型的氧缺陷诱导策略及微氧泵缺陷修复补氧机制,利用酸溶液中H+与非晶态Nb2O5·nH2O之间的路易斯酸碱交互引入缺陷结构,退火后即可产生含氧缺陷的T-Nb2O5-x,进而运用氧掺杂的石墨化氮化碳(O-g-C3N4)作为微氧泵修补氧化铌中过多的缺陷结构。这种诱导和修补缺陷的方法可控地调节了T-Nb2O5-x中的氧缺陷浓度,在提高电导率的同时,稳定了层状结构,实现了T-Nb2O5-x作为锂离子电池负极在大电流密度下的超长稳定循环。相关研究成果以Defect-Concentration-Mediated T-Nb2O5 Anodes for Durable and Fast-Charging Li-Ion Batteries为题,发表在Advanced Functional Materials上。
氧缺陷的引入使T-Nb2O5-x的电子电导率相比T-Nb2O5提高了一个数量级。理论计算和同步辐射均表明,氧缺陷的引入使NbO7五角双锥向NbO6四角双锥转变,这种转变引起层内Nb-O-Nb键的重排,少量Nb4+的形成在不破坏晶格结构的同时降低了由Jahn-Teller效应带来的扭曲,缓解了T-Nb2O5内部的晶格应力。根据PDOS计算及紫外-可见-红外吸收光谱的推算结果,T-Nb2O5-x的能带要明显低于T-Nb2O5的能带,证实了T-Nb2O5-x具有更高电导率。根据第一性原理建模,氧缺陷的位点最有可能位于铌氧多面体层间的Nb-O-Nb处。
O-g-C3N4微氧泵在高温下会气化,有利于氧原子释放并在缺陷位点上补充;O-g-C3N4也可以作为T-Nb2O5-x生长的自牺牲模板而构建多孔的大片电极网络。经微氧泵调节后,T-Nb2O5-x的氧缺陷浓度从19 μmol/g降低到0.31 μmol/g。缺陷修补后的T-Nb2O5-x表现出优异的循环稳定性,在5C大倍率下循环1100圈后的容量仍保持在164 mAh/g,在25 C的超高倍率下仍可释放104 mAh/g的容量。重缺陷型的T-Nb2O5-x在4 mg/cm2的高载量下可实现0.74 mAh/cm2的面容量。T-Nb2O5-x/LiNi0.8Co0.1Mn0.1O2全电池表现出高的电位平台(2.12 V)和大的比容量(229 mAh/g),证明了这种快充负极材料的实用性。氧缺陷调制策略为开发新型氧化物电极用于快充型和耐用型锂离子电池提供了新思路。
研究工作得到国家重点研发计划、国家自然科学基金、上海市科学技术委员会等的支持。上海交通大学科研人员参与该工作。
中科院上海硅酸盐所
|