开发高效电催化剂进行水的电化学转化,以生产环保、可持续的氢能源,是近几十年来科研人员广泛研究的热点问题。阳极处的析氧反应(OER)在水裂解中发挥着关键作用。然而,OER反应需要相对较大的热力学电位(超过1.23V vs. RHE)以克服因四个“电子-质子”转移过程而导致的缓慢动力学。近年来,金属有机骨架(MOFs)因其大比表面积、孔隙可调及多样的成分和金属中心而成为高效OER电催化剂的理想材料,但MOFs固有的低电导率严重阻碍了其催化活性。
针对这一现状,中国科学院宁波材料技术与工程研究所界面功能高分子材料团队张涛研究员与浙江大学侯阳研究员及中国科学院大连化学物理研究所肖建平研究员合作开发出一种二维纳米限域策略,即通过双电极电化学系统将导电性差的MOFs限域在石墨烯层间(图1),进而提高其OER催化活性。所获得的NiFe-MOF//G催化剂仅需106mV的极低过电位即可达到10 mA cm-2电流密度,远优于原始NiFe-MOF及此前报道的大多数MOFs及其衍生物的催化活性(图2)。同时,NiFe-MOF//G还表现出优异的OER催化稳定性,在10 mA cm-2电流密度下可稳定运行超过150h(图2)。
在进一步的表征及理论计算中发现,石墨烯多层纳米限域不仅可以在MOF结构中形成高活性NiO6-FeO5畸变八面体物种,优化MOF材料的电子结构和催化中心(图3),而且能够降低水氧化反应的极限电位(图4)。本文作者还证明了该策略能够扩展至其它不同结构的MOFs,并极大地提高它们的电催化活性。该项工作对原始MOFs作为惰性催化剂的普遍概念提出挑战,揭示了低导电性甚至绝缘MOFs在电催化中的应用潜力。相关成果以“Exceptional catalytic activity of oxygen evolution reaction via two-dimensional graphene multilayer confined metal-organic frameworks”为题发表在Nature Communications上(文章链接:https://doi.org/10.1038/s41467-022-33847-z)。第一作者:Siliu Lyu、Chenxi Guo;通讯作者:侯阳、张涛、肖建平;通讯单位:浙江大学、中科院宁波材料所、中科院大连化物所。
该研究得到中科院海洋新材料与应用技术重点实验室开放课题等项目的支持。
图1 NiFe-BTC//G的合成过程与结构表征
图2 NiFe-BTC//G在碱性条件下的电化学析氧催化性能
图3 NiFe-BTC//G的局部原子配位环境和电子结构分析
图4 OER活性的密度泛函理论计算
中科院宁波材料所
|